1 Introduction

In this lecture we prove that we can replace the unary implementation of counters with the binary one without breaking any clients (or vice versa). This is a consequence of parametricity, and the definition of logical equality we developed in the previous two lectures, extended to existential types.

2 Existential Types and Parametricity

We have said that the client of a module (expressed as having an existential type) is parametric in the implementation type. Let’s recall the crucial rules.

\[
\begin{align*}
\Gamma \vdash \sigma \text{ type} & \quad \Gamma \vdash e : [\sigma/\alpha]\tau \\
\hline
\Gamma \vdash \langle \sigma, e \rangle : \exists \alpha. \tau
\end{align*}
\]

\[\text{tp/exists}\]

\[
\begin{align*}
\Gamma \vdash e : \exists \alpha. \tau & \quad \Gamma, \alpha \text{ type}, x : \tau \vdash e' : \tau' \\
\hline
\Gamma \vdash \text{case } e (\langle \alpha, x \rangle \Rightarrow e') : \tau'
\end{align*}
\]

\[\text{tp/casee}\]

The client here is \(e'\) in the \(\text{tp/casee}\) rule. From typing judgment for \(e'\) in the second premise we can infer

\[
\begin{align*}
\Gamma, \alpha \text{ type}, x : \tau \vdash e' : \tau' \\
\hline
\Gamma, \alpha \text{ type} \vdash \lambda x. e' : \tau \rightarrow \tau'
\end{align*}
\]

\[\text{tp/lam}\]

\[
\Gamma \vdash \Lambda \alpha. \lambda x. e' : \forall \alpha. \tau \rightarrow \tau'
\]

\[\text{tp/tlam}\]

to see that, indeed, \(\lambda x. e'\) is parametric in \(\alpha\) and therefore also \(e'\).
3 Logical Equality for Existential Types

We extend our definition of logical equivalence to handle the case of existential types. Following the previous pattern for parametric polymorphism, we cannot talk about arbitrary instances of the existential type, but we must instantiate it with a relation between the two given implementation types.

Recall from Lecture 16:

\[(\forall v \sim v' \in [\forall \alpha. \tau] \text{ iff for all closed types } \sigma \text{ and } \sigma' \text{ and relations } R : \sigma \leftrightarrow \sigma', \text{ we have } v[\sigma] \approx v'[\sigma'] \in [[R/\alpha] \tau])\]

\[(R) \ v \sim v' \in [R] \text{ iff } v \ R \ v'.\]

We add

\[(\exists v \sim v' \in [\exists \alpha. \tau] \text{ iff } v = \langle \sigma, v_1 \rangle \text{ and } v' = \langle \sigma', v_1' \rangle \text{ for some closed types } \sigma, \sigma' \text{ and values } v_1, v_1', \text{ and there is a relation } R : \sigma \leftrightarrow \sigma' \text{ such that } v_1 \sim v_1' \in [[R/\alpha] \tau].\]

In our example, we ask if

\[NatCtr \sim BinCtr \in [CTR]\]

which unfolds into demonstrating that there is a relation \(R : nat \leftrightarrow bin\) such that

\[\langle \text{zero}, \langle \text{succ, pred} \rangle \rangle \sim \langle \text{e}, \langle \text{inc, dec} \rangle \rangle \in [R \times (R \rightarrow R) \times (R \rightarrow 1 + R)]\]

Since logical equality at type \(\tau_1 \times \tau_2\) just decomposes into logical equality at the component types, this just decomposes into three properties we need to check. The key step is to define the correct relation \(R\).

For reference, the complete implementation can be found in \(exists.cbv\). In Listing 1 we show the implementation \(NatCtr\) and \(BinCtr\) in LAMBDA. The concrete syntax for an existential type \(\exists \alpha. \tau\) is \(\texttt{?a.tau}\), and a package \(\langle \sigma, e \rangle\) is written as \(\langle [\sigma], e \rangle\). This notation means that, uniformly, types occurring in expressions are enclosed in square brackets.

4 Defining a Relation Between Implementations

The relation \(R : nat \leftrightarrow bin\) we seek needs to relate natural numbers in two different representations. It is convenient and general to define such relations by using inference rules. In particular, this will allow us to prove
decl pred : nat -> 1 + nat
defn pred = \n. case n of (fold 'zero () => 'l ()
 | fold 'succ m => 'r m)

decl dec : bin -> 1 + bin
defn dec = $dec. \x.
 case x
 of (fold 'b0 y => case dec y \$ 2y-1 = 2(y-1)+1
 | 'r z => 'r (b1 z))
 | fold 'b1 y => 'r (b0 y) % (2y+1)-1 = 2y
 | fold 'e () => 'l ())
type CTR = ?a. a * (a -> a) * (a -> 1 + a)
decl NatCtr : CTR
defn NatCtr = ([nat], zero, succ, pred)
decl BinCtr : CTR
defn BinCtr = ([bin], e, inc, dec)

Listing 1: Binary counters as an abstract type

properties by rule induction. An alternative approach would be to define such relations as functions, but because representations are often not unique this is not quite as general.

Once we have made this decision, the relation could be based on the structure of \(x : \text{bin} \) or on the structure of \(n : \text{nat} \). The latter may run into difficulties because each number actually corresponds to infinitely many numbers in binary form: just add leading zeros that do not contribute to its value. Therefore, we define it based on the binary representation. In order to define it concisely, we use a representation function for (mathematical) natural numbers \(k \) into our language of values defined by

\[
\begin{align*}
\bar{0} &= \text{fold zero} \cdot \{ \} \\
\bar{n + 1} &= \text{fold succ} \cdot \bar{n}
\end{align*}
\]

We also write binary number representations in compressed form with the
least significant bit first:¹

\[
0x = \text{fold } b0 \cdot x \\
1x = \text{fold } b1 \cdot x \\
e = \text{fold } e \cdot \langle \rangle
\]

Recall the ambiguity that \(e, 0e, 00e \) etc. all represent the natural number 0.

We then define:

\[
\frac{R_e}{0 R e} \quad \frac{\text{fold } x}{2k R 0x} \quad R_0 \quad \frac{\text{fold } x}{2k + 1 R 1x} \quad R_1
\]

As usual, we consider \(n R x \) to hold if and only if we can derive it using these rules.

5 Verifying the Relation

Because our signature exposes three constants, we now have to check three properties:

\[
\begin{align*}
\text{zero} & \sim e \in [R] \\
\text{succ} & \sim \text{inc} \in [R \rightarrow R] \\
\text{pred} & \sim \text{dec} \in [R \rightarrow 1 + R]
\end{align*}
\]

We already have by definition that \(v \sim v' \in [R] \) iff \(v R v' \). For convenience, we also define the notation \(e R e' \) to stand for \(e \approx e' \in [R] \), which means that \(e \mapsto* v \) and \(e' \mapsto* v' \) with \(v R v' \).

Lemma 1 \(\text{zero} \sim e \in [R] \).

Proof: Since \(\overline{0} = \text{zero} \) and \(e = e \) this is just the contents of rule \(R_e \). \(\square \)

Lemma 2 \(\text{succ} \sim \text{inc} \in [R \rightarrow R] \).

Proof: By definition of logical equality, this is equivalent to showing

\[
\text{For all values } n : \text{nat and } x : \text{bin with } n R x \text{ we have } (\text{succ } n) R (\text{inc } x).
\]

¹In lecture, we used the notation \(b0 x, b1 x \) and \(e \) to stand for the corresponding values, but that is somewhat ambiguous since \(b0 \) and \(b1 \) were previously defined as function in our language rather than as functions at the metalevel as we need here.
Since R is defined inductively by a collection of inference rules, the natural attempt is to prove this by rule induction on the given relation, namely $n R x$.

Case: Rule

\[
\frac{}{\overline{0} R e}
\]

with $n = \overline{0}$ and $x = e$. We have to show that $(\text{succ } \overline{0}) R (\text{inc } e)$

\[
\text{succ } \overline{0} \mapsto^* 1 \\
\text{inc } e \mapsto^* 1e \\
\overline{1} R 1e
\]

By defn. of succ
By defn. of inc
By rules R_1 and R_e

Case: Rule

\[
\frac{\overline{k} R y}{2\overline{k} R 0y}
\]

where $x = 0y$ and $n = 2\overline{k}$. To prove is $(\text{succ } 2\overline{k}) R (\text{inc } 0y)$.

\[
\text{succ } 2\overline{k} \mapsto^* 2\overline{k} + 1 \\
\text{inc } 0y \mapsto^* 1y \\
\overline{k} R y \\
2\overline{k} + 1 R 1y
\]

By defn. of succ
By defn. of inc
Premise in this case
By rule R_1

Case: Rule

\[
\frac{\overline{k} R y}{2\overline{k} R 1y}
\]

where $n = 2\overline{k} + 1$ and $x = 1y$. To show: $(\text{succ } 2\overline{k} + 1) R (\text{inc } 1y)$.

\[
\text{succ } 2\overline{k} + 1 \mapsto^* 2\overline{k} + 2 \\
\text{inc } 1y \mapsto^* b0 (\text{inc } y) \mapsto^* 0z \text{ where } \text{inc } y \mapsto^* z \\
\text{Remains to show: } 2\overline{k} + 2 R 0z
\]

By defn. of succ
By defn. of inc and b0
Premise in this case
By ind. hyp.
By defn. of R and succ
By rule R_0
By arithmetic

\[
\square
\]
In order to prove the relation between the implementation of the predecessor function we write out the interpretation of the type $1 + R$.

$$v \sim v' \in [1 + R] \text{ iff (} v = 1 \cdot \langle \rangle \text{ and } v' = 1 \cdot \langle \rangle \text{)}$$

or (\(v = r \cdot v_1\) and \(v' = r \cdot v'_1\) and \(v_1 R v'_1\)).

Lemma 3 \(\text{pred} \sim \text{dec} \in [R \rightarrow 1 + R]\)

Proof: By definition of logical equality, this is equivalent to showing

For all values \(n : \text{nat}\) and \(x : \text{bin}\) with \(n R x\) we have \(\text{pred} \ n \approx \text{dec} \ x \in [1 + R]\).

We break this down into two properties, based on \(n\).

(i) For all \(0 R x\) we have \(\text{pred} \ 0 \approx \text{dec} \ x \in [(1 : 1)]\).

(ii) For all \(k + 1 R x\) we have \(\text{pred} \ k + 1 \approx \text{dec} \ x \in [(r : R)]\).

For part (i), we note that \(\text{pred} \ 0 \Rightarrow^* 1 \cdot \langle \rangle\), so all that remains to show is that \(\text{dec} \ 0 = \text{dec} \ 0 \Rightarrow^* 1 \cdot \langle \rangle\) for all \(0 R x\). We prove this by rule induction on the derivation of \(0 R x\).

Case(i):

$$\quad \frac{R \ e}{0 R e}$$

where \(x = e\). Then \(\text{dec} \ 0 = \text{dec} \ e \Rightarrow^* 1 \cdot \langle \rangle\).

Case(i):

$$\quad \frac{R \ y}{2k R 0 y}$$

$$\quad \frac{R_k}{R_0}$$

where \(x = 0y\) and \(2k = 0\) and therefore also \(k = 0\). Then

\(\text{dec} \ 0y \Rightarrow^* \text{case} (\text{dec} \ y) (1 \cdot \langle \rangle \Rightarrow 1 \cdot \langle \rangle | r \cdot z \Rightarrow r \cdot (b1 z))\) By defn. of \(\text{dec} \ y \Rightarrow^* 1 \cdot \langle \rangle\) By ind. hyp.

\(\text{case} (\text{dec} \ y) (1 \cdot \langle \rangle \Rightarrow 1 \cdot \langle \rangle | r \cdot z \Rightarrow r \cdot (b1 z)) \Rightarrow^* 1 \cdot \langle \rangle\)

\(\frac{2}{3}\)We skipped this part of the proof in lecture.
Case(i):
\[
\frac{\overline{k} \ R \ y}{2k + 1 \ R \ 1y} \ R_1
\]
This case is impossible since \(2k + 1 \neq 0\).

Now we come to Part (ii). We note that \(\text{pred} \overline{k + 1} \mapsto^* r \cdot \overline{k}\) so what we have to show is that

(ii)’ For all \(\overline{k + 1} \ R \ x\) we have \(\text{dec} \ x \mapsto^* r \cdot y\) with \(\overline{k} \ R \ y\).

We prove this by rule induction on the derivation of \(\overline{k + 1} \ R \ x\).

Case(ii):
\[
\frac{0 \ R \ e}{\overline{0} \ R \ e} \ R_e
\]
is impossible since \(\overline{0} \neq \overline{k + 1}\).

Case(ii):
\[
\frac{j \ R \ y}{2j \ R \ 0y} \ R_0
\]
where \(k + 1 = 2j\) and \(x = 0y\).

\(j = j' + 1\) for some \(j'\) \hspace{2cm} \text{Since } j > 0 \text{ by arithmetic}
\(\text{dec} \ y \mapsto^* r \cdot z\) with \(j' \ R \ z\) \hspace{2cm} \text{By ind. hyp.}
\(\text{dec} \ 0y \mapsto^* r \cdot 1z\) \hspace{2cm} \text{By defn. of dec}
\(\frac{2j' + 1 \ R \ 1z}{\overline{k} \ R \ 1z}\) \hspace{2cm} \text{By rule } R_1
\(\overline{k} \ R \ 1z\) \hspace{2cm} \text{By arithmetic}

Case(ii):
\[
\frac{j \ R \ y}{2j + 1 \ R \ 1y} \ R_1
\]
for \(k + 1 = 2j + 1\) and \(x = 1y\). Then
\(\text{dec} \ 1y \mapsto^* r \cdot 0y\) \hspace{2cm} \text{By defn. of dec}
\(j \ R \ y\) \hspace{2cm} \text{Premise in this case}
\(\frac{j \ R \ y}{2j \ R \ 0y}\) \hspace{2cm} \text{By rule } R_0
\(\frac{2j \ R \ 0y}{\overline{k} \ R \ 0y}\) \hspace{2cm} \text{By arithmetic}

\(\square\)
6 Concrete Types vs. Abstract Types

An interesting observation about the logical equivalence of the two implementation of counters is that, had we omitted the decrement operation from the interface, then universal relation \((n \cup x \text{ for all values } n : \text{nat and } x : \text{bin})\) also allows us to prove equivalence. This is because without the decrement we can create a counter and increment it, but can never observe any of its properties.

This raises the question how we should more generally observe properties of elements of abstract type. There is no universal answer: different applications or libraries require different choices. A particularly frequent and useful technique is to endow abstract types with a view, realized by a function called expose or out.

As an example, let’s reconsider the (concrete) type of binary numbers:

\[
\text{bin} = (b0 : \text{bin}) + (b1 : \text{bin}) + (e : 1)
\]

This concrete type allows clients to construct numbers with leading zeros, which may be undesirable because it complicates certain algorithms (e.g., equality of binary numbers). In this case, one solution would be to split the type \text{bin} into positive numbers \text{pos} and numbers in standard form \text{std} (with no leading zeros), which we did in Lecture 11, Exercise 1. However, now all client code has to be aware of these two types and use them appropriately. Alternatively, we can create an abstract type providing the constructors in the interface. to start with, we would have

\[
\text{BIN} = \exists \alpha. (\alpha \rightarrow \alpha) \times (\alpha \rightarrow \alpha) \times (\alpha \rightarrow \alpha) \times (\alpha \rightarrow (\text{b0} : \alpha) + (\text{b1} : \alpha) + (e : 1))
\]

The implementation of these constructors can make sure that only numbers with no leading zeros are ever created. But how do we observe a value of the abstract type? The technique is to provide a function \text{out} : \alpha \rightarrow \tau where \tau is usually a sum that the client can pattern match against. Here we would have

\[
\text{BIN} = \exists \alpha. (\alpha \rightarrow \alpha) \times (\alpha \rightarrow \alpha) \times (\alpha \rightarrow \alpha) \times (\alpha \rightarrow (\text{b0} : \alpha) + (\text{b1} : \alpha) + (e : 1))
\]
The result \(\text{out} \ v \) where \(v \) is a value of the abstract type allows one level of pattern matching. The value tagged by \(b_0 \) or \(b_1 \) is again of abstract type and we must apply \(\text{out} \) again. If we want to allow multiple levels of pattern matching we would need some special syntax to designate \(\text{out} \) as a view with a corresponding pattern constructor, say, \(\text{out}^{-1} \). Then matching the value \(v : \alpha \) against the pattern \(\text{out}^{-1} \ p \) will evaluate \(\text{out} \ v \mapsto w \) and match \(w \) against \(p \).

We show the implementation of this abstract type in \textsc{Lambda}. In this example, the \(\text{out} \) function just has to unfold the recursive type to expose the sum underneath.

```plaintext
type BIN = ?a. (a -> a) % b0 = \n. 2n
* (a -> a) % b1 = \n. 2n+1
* a % e = 0
* (a -> (((b0 : a) + (b1 : a) + (e : 1))) % out

decl Bin : BIN
defn Bin = ([bin], \x. case x of (fold 'e () => e
| _ => b0 x ),
\x. b1 x, e, \x. unfold x)
```

The only other interesting part of this is the constructor corresponding to the tag \(b_0 \) ensures that it never constructs \(0e \) but returns \(e \) instead, thereby making the representation unique.

7 Polymorphic Lists

In functional languages lists are usually represented by a so-called type constructor \(\text{list} \ : \type \to \type \). That is, for any type \(\tau \), we would have

\[
\text{list} \ \tau = \rho \beta. (\text{nil} : 1) + (\text{cons} : \tau \times \beta)
\]

We have not introduced type constructors into our language, so we cannot express this directly. But we can formulate it as an abstract type. Essentially, the implementation is a \emph{function} which takes an element type \(\tau \) as an argument and returns in instance of an existential type for this particular \(\tau \).

```plaintext
type LIST = !a. ?b. b % nil
* (a * b -> b) % cons x l
* (b -> ('nil : 1) + ('cons : a * b)) % out l
```

There is, however, a quirk with the implementation that often comes up with abstract types. If we have an implementation of lists, for example
then two different uses of this, e.g., \(\text{List} [\text{nat}] \) and \(\text{List} [\text{nat}] \) are incompatible because there is no way the type checker can know that the different abstract types are actually equal. We summarize this sometimes by saying that abstract types are *generative* because every time an implementation of an abstract type is opened, a fresh type variable is generated to stand for the implementation type.

This implementation of lists, by the way, is called a *functor* in languages in the ML family, because it is a module-level function. We think of it this way because it is a function that returns an abstract type when given a type.

8 The Upshot

Because the two implementations are logically equal we can replace one implementation by the other without changing any client’s behavior. This is because all clients are parametric, so their behavior does not depend on the library’s implementation.

It may seem strange that this is possible because we have picked a particular relation to make this proof work. Let us reexamine the \text{tp/case} rule:

\[
\Gamma \vdash e : \exists \alpha. \tau \quad \Gamma, \alpha \ type, x : \tau \vdash e' : \tau' \\
\Gamma \vdash \text{case } e (\langle \alpha, x \rangle \Rightarrow e') : \tau'
\]

In the second premise we see that the client \(e' \) is checked with a fresh type \(\alpha \) and \(x : \tau \) which may mention \(\alpha \). If we reify this into a function, we find

\[
\Lambda \alpha. \lambda x. e' : \forall \alpha. \tau \rightarrow \tau'
\]

where \(\tau' \) does not depend on \(\alpha \).

By Reynolds’s parametricity theorem we know that this function is parametric. This can now be applied for any \(\sigma \) and \(\sigma' \) and relation \(R : \sigma \leftrightarrow \sigma' \) to conclude that if \(v_0 \sim v_0' \in \llbracket R/\alpha \rrbracket \) then \((\Lambda \alpha \lambda x. e')[\sigma] v_0 \approx (\Lambda \alpha. \lambda x. e')[\sigma'] v_0' \in \llbracket R/\alpha \rrbracket \). But \(\alpha \) does not occur in \(\tau' \), so this is just saying that \([\sigma/\alpha, v_0/x]e' \approx [\sigma'/\alpha, v_0'/x]e' \in \llbracket \tau \rrbracket \). So the result of substituting the two different implementations is equivalent.
Exercises

Exercise 1 We can represent integers a as pairs (x, y) of natural numbers where $a = x - y$. We call this the difference representation and call the representation type diff.

\[
\text{nat} = \text{rho} \cdot (\text{zero} : 1) + (\text{succ} : \text{alpha}) \\
\text{diff} = \text{nat} \times \text{nat}
\]

In your answers below you may use constructors $\text{zero} : \text{nat}$ and $\text{succ} : \text{nat} \rightarrow \text{nat}$ to construct terms of type nat. If you need auxiliary functions on natural numbers, you should define them.

1. Define a function $\text{nat2diff} : \text{nat} \rightarrow \text{diff}$ that, when given a representation of the natural number n returns an integer representing n.

2. Define a constant $d\text{zero} : \text{diff}$ representing the integer 0 as well as functions $\text{dplus} : \text{diff} \rightarrow \text{diff} \rightarrow \text{diff}$ and $\text{dminus} : \text{diff} \rightarrow \text{diff} \rightarrow \text{diff}$ representing addition and subtraction on integers, respectively.

3. Consider the type

\[
\text{ord} = (\text{lt} : 1) + (\text{eq} : 1) + (\text{gt} : 1)
\]

that represents the outcome of a comparison (lt = “less than”, eq = “equal”, gt = “greater than”). Define a function $\text{dcompare} : \text{diff} \rightarrow \text{diff} \rightarrow \text{ord}$ to compare the two integer arguments. Again, you may use lt, eq and gt as constructors.

Exercise 2 We consider an alternative signed representation of integers where

\[
\text{sign} = (\text{pos} : \text{nat}) + (\text{neg} : \text{nat})
\]

where $\text{pos} \cdot x$ represents the integer x and $\text{neg} \cdot x$ represents the integer $-x$. In your answers below you may use pos and neg as data constructors, to construct elements of type sign. Define the following functions in analogy with Exercise 1:

1. $\text{nat2sign} : \text{nat} \rightarrow \text{sign}$

2. $\text{szero} : \text{sign}$

3. $\text{plus} : \text{sign} \rightarrow \text{sign} \rightarrow \text{sign}$
4. \(s_{minus} : \text{sign} \rightarrow \text{sign} \rightarrow \text{sign} \)

5. \(s_{compare} : \text{sign} \rightarrow \text{sign} \rightarrow \text{ord} \)

Exercise 3 In this exercise we pursue two different implementations of an integer counter, which can become negative (unlike the natural number counter in this lecture). The functions are simpler than the ones in Exercise 1 and Exercise 2 so that the logical equality argument is more manageable. We specify a signature

\[
\text{INTCTR} = \{ \\
\text{type ictr} \\
\text{new : ictr} \\
\text{inc : ictr} \rightarrow \text{ictr} \\
\text{dec : ictr} \rightarrow \text{ictr} \\
\text{is0 : ictr} \rightarrow \text{bool} \\
\}
\]

where \textit{new, inc, dec} and \textit{is0} have their obvious specification with respect to integers, generalizing the \textit{CTR} type defined in the last lecture and used in this one.

1. Write out the definition of \textit{INTCTR} as an existential type.

2. Define the constants and functions \(d_{zero}, d_{inc}, d_{dec} \) and \(d_{is0} \) for the implementation where type \textit{ictr} = \textit{diff} from Exercise 1.

3. Define the constants and functions \(s_{zero}, s_{inc}, s_{dec} \) and \(s_{is0} \) for the implementation where type \textit{ictr} = \textit{sign} from Exercise 2.

Now consider the two definitions

\[
\text{DiffCtr} : \text{INTCTR} = \langle \text{diff}, (d_{zero}, d_{inc}, d_{dec}, d_{is0}) \rangle \\
\text{SignCtr} : \text{INTCTR} = \langle \text{sign}, (s_{zero}, s_{inc}, s_{dec}, s_{is0}) \rangle
\]

4. Prove that \(\text{DiffCtr} \sim \text{SignCtr} \in [\text{INTCTR}] \) by defining a suitable relation \(R : \text{diff} \leftrightarrow \text{sign} \) and proving that

\[
\langle d_{zero}, d_{inc}, d_{dec}, d_{is0} \rangle \sim \langle s_{zero}, s_{inc}, s_{dec}, s_{is0} \rangle \\
\in [R \times (R \rightarrow R) \times (R \rightarrow R) \times (R \rightarrow \text{bool})]
\]