1 Introduction

In this lecture we continue our exploration of the λ-calculus and the representation of data and functions on them. We give schematic forms to define functions on natural numbers and give uniform ways to represent them in the λ-calculus. We begin with the schema of iteration and then proceed the more complex schema of primitive recursion. In the next lecture we will arrive at the fully general scheme of recursion.

2 Function Composition

One the most fundamental operation on functions in mathematics is to compose them. We might write

$$(f \circ g)(x) = f(g(x))$$

Having λ-notation we can first explicitly denote the result of composition (with some redundant parentheses)

$$f \circ g = \lambda x. f(g(x))$$

As a second step, we realize that \circ itself is a function, taking two functions as arguments and returning another function. Ignoring the fact that it is usually written in infix notation, we define

$$\circ = B = \lambda f. \lambda g. \lambda x. f(g(x))$$
We call it B because that’s its traditional name as a combinator.

The unit of composition should be the identity function, as defined by $I = \lambda x. x$. Composing any other function f with I should just yield f. In other words, we expect

$$B f I \equiv f \equiv B I f$$

Let’s calculate:

$$B f I = (\lambda f. \lambda g. \lambda x. f(gx)) f I$$
$$\rightarrow_\beta (\lambda g. \lambda x. f(gx)) I$$
$$\rightarrow_\beta \lambda x. f(Ix)$$
$$? = \lambda x. f x$$

We see the result is not exactly f as we expected, but $\lambda x. f x$. However, these two expressions always behave the same when applied to an arbitrary argument so they are extensionally equal. To capture this we add one more rule to the λ-calculus:

\[\eta \text{-conversion} \quad \lambda x. e x =_\eta e \quad \text{provided } x \notin \text{FV}(e) \]

The proviso that x not be among the free variables of e is needed, because $\lambda x. x x \not= \lambda x. y x$. The first applies the argument to itself, the second applies y to the given argument.

It is possible to orient this equation and investigate the notion of $\beta\eta$-reduction. However, it turns out this is somewhat artificial because extensionality is a reasoning principle for equality and not a priori a computational principle. Interestingly, in the setting of typed λ-calculi it makes more sense to use the equation from right to left, called η-expansion, but some discipline has to be imposed or expansion does not terminate.

We should remember that this form of extensionality does not extend to functions defined over specific representations. For example, we saw there are (at least) two formulations of negation on Booleans which are not equal, even if we throw in the rule of η-conversion.

3 Nontermination

At this point we pause briefly to ask three natural questions:

1. Does every expression have a normal form?
2. Can we always compute a normal form if one exists?
3. Are normal forms unique?

The answers to these questions are crucial to understanding to what extent we might consider the λ-calculus a universal model of computation.

Does every expression have a normal form?

If the λ-calculus is to be equivalent in computational power to Turing machines in some way, then we would expect the answer to be “no” because computations of Turing machines may not halt. However, it is not immediate to think of some expression that doesn’t have a normal form. If you haven’t seen something like this already, you may want to play around with some expressions to see if you can come up with one.
The simplest one is
\[\Omega = (\lambda x. x\ x) (\lambda x. x\ x) \]

Indeed, there is only one possible \(\beta \)-reduction and it immediately leads to exactly the same term:
\[
\Omega \rightarrow_\beta (\lambda x. x\ x) (\lambda x. x\ x)
\rightarrow_\beta (\lambda x. x\ x) (\lambda x. x\ x)
\rightarrow_\beta \ldots
\]

So \(\Omega \) reduces in one step to itself and only to itself.

Can we always compute a normal form if one exists?

The answer here is “yes”, although it is not easy to prove that this is the case. Let’s consider an example (recall that \(K = \lambda x. \lambda y. x \)):
\[
KI\Omega \rightarrow_\beta (\lambda y. I) \Omega \rightarrow_\beta I
\]

So the expression \(K I \Omega \) does have a normal form, even though \(\Omega \) does not. This is because the constant function \(K I \) ignores its argument. On the other hand we also have
\[
KI\Omega \rightarrow_\beta KI\Omega \rightarrow_\beta KI\Omega \rightarrow_\beta \ldots
\]

because we have the \(\Omega \rightarrow_\beta \Omega \) and reduction can be applied anywhere in an expression.

Fortunately, there is a strategy which turns out to be complete in the sense that if an expression has a normal form, this strategy will find it. It is called **leftmost-outermost** or **normal-order reduction**. This strategy scans through the expression from left to right and when it find a **redex** (that is, an expression of the form \((\lambda x. e) e' \)) it applies \(\beta \)-reduction and then returns to the beginning of the result expression. In particular, it does not consider any redex in \(e \) or \(e' \), only the “outermost” one. Also, in an expression \(((\lambda x. e_1) e_2) e_3 \) it does not consider any potential redex in \(e_3 \), only the leftmost one.

This strategy works in our example: the redex in \(\Omega \) would not be considered, only the redex \(K I \) and then the redex \((\lambda y. I) \Omega \).

The implementation of LAMBDA uses a straightforward function for leftmost-outermost reduction, complicated very slightly by the fact that
names such as K or I which in the notes are only abbreviations at the mathematical level of discourse, are actual language-level definitions in the implementation. So we have to expand the definition of K, for example, before applying β-reduction, but we do not officially count this as a substitution.

The notion of leftmost-outermost reduction is closely related to the notion of call-by-name evaluation in programming languages (and, with a little more distance, to call-by-need which is employed in Haskell). In contrast, call-by-value would reduce the argument of a function before applying the β-reduction, which is not complete, as our example shows. The analogy is not exact, however, since in programming languages such as ML or Haskell we also do not reduce under λ-abstractions, a fact that represents a sharp dividing line between foundational calculi such as the λ-calculus and actual programming languages. We will justify and understand these decisions in a few lectures.

Are normal forms unique?

The outcome of a computation starting from e is its normal form. At any point during a computation there may be many redices. Ideally, the outcome would be independent of the reduction strategy we choose as long as we reach a normal form. Otherwise, the meaning of an expression (as represented by its normal form) may be ambiguous. Therefore, Church and Rosser [CR36] spend considerable effort in proving the uniqueness of normal forms. The key technical device is a property called confluence (also referred to as the Church-Rosser property). It is often depicted in the following diagram:

```
  e
 /\  *
\ e1  e2
  *\  *
  e'  *
```

In words: if we can reduce e to e_1 and also e to e_2 then there exists an e' such that e_1 and e_2 both reduce to e'. The solid lines are given reduction sequences while the reduction sequences represented by dashed lines have to be shown to exist. Reduction here is in multiple steps (indicated by the star "* "). For the λ-calculus (and the original Church-Rosser Theorem), this reduction would usually be β-reduction. Very roughly, the proof shows how
to simulate the steps from \(e \) to \(e_2 \) when starting from \(e_1 \) and \(\) (symmetrically) simulate the steps from \(e \) to \(e_1 \) when starting from \(e_2 \).

Confluence implies the uniqueness of normal forms. Suppose \(e_1 \) and \(e_2 \) in the diagram are normal forms. Because they cannot be reduced further, the sequence of reductions to \(e' \) must consist of zero steps, so \(e_1 = e' = e_2 \).

Confluence implies that even though we might embark on an unfortunate path (for example, keep reducing \(\Omega \) in \(K I \Omega \)) we can still recover if indeed there is a normal form. In this example, we might eventually decide to reduce \(K I \) and then the redex \((\lambda y. I) \Omega\).

4 Representing Natural Numbers

Finite types such as Booleans are not particularly interesting. When we think about the computational power of a calculus we generally consider the natural numbers \(0, 1, 2, \ldots\). We would like a representation \(\bar{n} \) such that they are all distinct. We obtain this by thinking of the natural numbers as generated from zero by repeated application of the successor function. Since we want our representations to be closed we start with two abstractions: one \((z)\) that stands for zero, and one \((s)\) that stands for the successor function.

\[
\begin{align*}
0 &= \lambda s. \lambda z. z \\
1 &= \lambda s. \lambda z. s z \\
2 &= \lambda s. \lambda z. s (s z) \\
3 &= \lambda s. \lambda z. s (s (s z)) \\
&\vdots \\
\bar{n} &= \lambda s. \lambda z. s (\ldots (s z)) \\
&\quad \text{\(n\) times}
\end{align*}
\]

In other words, the representation \(\bar{n} \) iterates its first argument \(n \) times over its second argument

\[\bar{n} f x = f^n (x)\]

where \(f^n (x) = f(\ldots (f(x))) \)

\[\text{\(n\) times}\]

The first order of business now is to define a successor function that satisfies \(\text{succ} \ \bar{n} = \bar{n+1} \). As usual, there is more than one way to define it, here is one (throwing in the definition of \(\text{zero} \) for uniformity):

\[
\begin{align*}
\text{zero} &= 0 = \lambda s. \lambda z. z \\
\text{succ} &= \lambda n. n + 1 = \lambda n. \lambda s. \lambda z. s (n s z)
\end{align*}
\]
We cannot carry out the correctness proof in closed form as we did for the Booleans since there would be infinitely many cases to consider. Instead we calculate generically (using mathematical notation and properties)

\[
\text{succ } n = \lambda s.\lambda z. s (n z s)
\]

\[
= \lambda s.\lambda z. s (s^n (z))
\]

\[
= \lambda s.\lambda z. s^{n+1} (z)
\]

\[
= n + 1
\]

A more formal argument might use mathematical induction over \(n \).

Using the iteration property we can now define other mathematical functions over the natural numbers. For example, addition of \(n \) and \(k \) iterates the successor function \(n \) times on \(k \).

\[
\text{plus} = \lambda n.\lambda k. n \text{ succ } k
\]

You are invited to verify the correctness of this definition by calculation. Similarly:

\[
\text{times} = \lambda n.\lambda k. n (\text{plus } k) \text{ zero}
\]

\[
\text{exp} = \lambda b.\lambda e. e (\text{times } b) (\text{succ zero})
\]

5 The Schema of Iteration

As we saw in the first lecture, a natural number \(n \) is represented by a function \(n \) that iterates its first argument \(n \) times applied to the second: \(n g c = g (\ldots (g c)) \). Another way to specify such a function schematically is \(n \) times

\[
f 0 = c
\]

\[
f (n + 1) = g (f n)
\]

If a function satisfies such a schema of iteration then it can be defined in the \(\lambda \)-calculus on Church numerals as

\[
f = \lambda n. n g c
\]

which is easy to verify. The class of function definable this way is total (that is, defined on all natural numbers if \(c \) and \(g \) are), which can easily be proved by induction on \(n \). Returning to examples from the last lecture, let’s consider multiplication again.

\[
\text{times } 0 k = 0
\]

\[
\text{times } (n + 1) k = k + \text{times } n k
\]
This doesn’t exactly fit our schema because \(k \) is an additional parameter. That’s usually allowed for iteration, but to avoid generalizing our schema the \(\text{times} \) function can just return a function by abstracting over \(k \).

\[
\begin{align*}
\text{times} \ 0 &= \lambda k. \ 0 \\
\text{times} \ (n + 1) &= \lambda k. \ k + \text{times} \ k
\end{align*}
\]

We can read off the constant \(c \) and the function \(g \) from this schema

\[
\begin{align*}
c &= \lambda k. \ \text{zero} \\
g &= \lambda r. \lambda k. \ \text{plus} \ k \ (r \ k)
\end{align*}
\]

and we obtain

\[
\text{times} = \lambda n. \ n \ (\lambda r. \lambda k. \ \text{plus} \ k \ (r \ k)) \ (\lambda k. \ \text{zero})
\]

which is more complicated than the solution we constructed by hand

\[
\begin{align*}
\text{plus} &= \lambda n. \lambda k. \ n \ \text{succ} \ k \\
\text{times} \ &= \lambda n. \lambda k. \ n \ (\text{plus} \ k) \ \text{zero}
\end{align*}
\]

The difference in the latter solution is that it takes advantage of the fact that \(k \) (the second argument to \(\text{times} \)) never changes during the iteration. We have repeated here the definition of \(\text{plus} \), for which there is a similar choice between two versions as for \(\text{times} \).

6 The Schema of Primitive Recursion

It is easy to define very fast-growing functions by iteration, such as the exponential function, or the “stack” function iterating the exponential.

\[
\begin{align*}
\text{exp} &= \lambda b. \lambda e. \ e \ (\text{times} \ b) \ (\text{succ} \ \text{zero}) \\
\text{stack} &= \lambda b. \lambda n. \ n \ (\text{exp} \ b) \ (\text{succ} \ \text{zero})
\end{align*}
\]

Everything appears to be going swimmingly until we think of a very simple function, namely the predecessor function defined by

\[
\begin{align*}
\text{pred} \ 0 &= 0 \\
\text{pred} \ (n + 1) &= n
\end{align*}
\]

You may try for a while to see if you can define the predecessor function, but it is difficult. The problem is that we have to go from \(\lambda s. \lambda z. \ s \ (\ldots \ (s \ z) \ldots) \)
to $\lambda s. \lambda z. s \ldots z$, that is, we have to remove an s rather than add an s as was required for the successor. One possible way out is to change representation and define \overline{n} differently so that predecessor becomes easy (see Exercise 3).

We run the risk that other functions then become more difficult to define, or that the representation is larger than the already inefficient unary representation already is. We follow a different path, keeping the representation the same and defining the function directly.

We can start by assessing why the schema of iteration does not immediately apply. The problem is that in

$$f 0 = c$$
$$f (n + 1) = g (f n)$$

the function g only has access to the result of the recursive call of f on n, but not to the number n itself. What we would need is the schema of primitive recursion:

$$f 0 = c$$
$$f (n + 1) = h n (f n)$$

where n is passed to h. For example, for the predecessor function we have $c = 0$ and $h = \lambda x. \lambda y. x$ (we do not need the result of the recursive call, just n which is the first argument to h).

6.1 Defining the Predecessor Function

Instead of trying to solve the general problem of how to implement primitive recursion, let’s define the predecessor directly. Mathematically, we write $n + 1$ for the predecessor (that is, $0 + 1 = 0$ and $n + 1 + 1 = n$). The key idea is to gain access to n in the schema of primitive recursion by rebuilding it during the iteration. This requires pairs, a representation of which we will construct shortly.

Our specification then is

$$\text{pred}_2 n = \langle n, n + 1 \rangle$$

and the key step in its implementation in the λ-calculus is to express the definition by a schema of iteration rather than primitive recursion. The start is easy:

$$\text{pred}_2 0 = \langle 0, 0 \rangle$$

For $n + 1$ we need to use the value of $\text{pred}_2 n$. For this purpose we assume we have a function letpair where

$$\text{letpair} \langle e_1, e_2 \rangle k = k e_1 e_2$$
L2.10 Primitive Recursion

In other words, \textit{letpair} passes the elements of the pair to a “continuation” \(k \). Using \textit{letpair} we start as

\[
\text{pred}_2(n + 1) = \text{letpair}(\text{pred}_2 n)(\lambda x. \lambda y. \ldots)
\]

If \(\text{pred}_2 \) satisfies its specification then reduction will substitute \(n \) for \(x \) and \(n - 1 \) for \(y \). From these we need to construct the pair \((n + 1, n) \) which we can do, for example, with \((x + 1, x) \). This gives us

\[
\begin{align*}
\text{pred}_2 0 &= (0, 0) \\
\text{pred}_2 (n + 1) &= \text{letpair}(\text{pred}_2 n)(\lambda x. \lambda y. (x + 1, x)) \\
\text{pred} n &= \text{letpair}(\text{pred}_2 n)(\lambda x. \lambda y. y)
\end{align*}
\]

6.2 Defining Pairs

The next question is how to define pairs and \textit{letpair}. The idea is to simply abstract over the continuation itself! Then \textit{letpair} isn’t really needed because the functional representation of the pair itself will apply its argument to the two components of the pair, but if we want to write it out it would be the identity.

\[
\begin{align*}
\langle x, y \rangle &= \lambda k. kx y \\
\text{pair} &= \lambda x. \lambda y. \lambda k. kx y \\
\text{letpair} &= \lambda p. p
\end{align*}
\]

6.3 Proving the Correctness of the Predecessor Function

Summarizing the above and expanding the definition of \textit{letpair} we obtain

\[
\begin{align*}
\text{pred}_2 &= \lambda n. n (\lambda p. (\lambda x. \lambda y. \text{pair}(\text{succ} x) x)) (\text{pair} \text{ zero}\ \text{zero}) \\
\text{pred} &= \lambda n. \text{pred}_2 n(\lambda x. \lambda y. y)
\end{align*}
\]

Let’s do a rigorous proof of correctness of \(\text{pred} \), especially since we got it wrong when we worked in a hurry during lecture. For the representation of natural numbers, it is convenient to assume its correctness in the form

\[
\begin{align*}
\bar 0 g c &= \beta c \\
\bar n + 1 g c &= \beta g(\bar n g c)
\end{align*}
\]

Lemma 1 \(\text{pred}_2 \bar n = \beta \langle n, n - 1 \rangle \)
Primitive Recursion

Proof: By mathematical induction on \(n \).

Base: \(n = 0 \). Then

\[
\begin{align*}
pred_2 \overline{0} &= \overline{0} (\ldots) (\text{pair zero zero}) \\
&= \beta \text{pair zero zero} \\
&= \beta (0, 0) = (0, 0 \div 1)
\end{align*}
\]
By repn. of 0

By repn. of 0 and pairs

Step: \(n = m + 1 \). Then

\[
\begin{align*}
pred_2 m + 1 &= \beta m + 1 (\lambda p. (\lambda x. \lambda y. \text{pair} (\text{succ} x) x)) (\text{pair zero zero}) \\
&= \beta (\lambda p. (\lambda x. \lambda y. \text{pair} (\text{succ} x) x)) (\overline{m} (\lambda p. \ldots) (\ldots)) \\
&= \beta (\lambda p. (\lambda x. \lambda y. \text{pair} (\text{succ} x) x)) (\text{pred}_2 \overline{m}) \\
&= \beta \text{pair} (\text{succ} \overline{m}) \overline{m} \\
&= \beta (m + 1, m) \\
&= (m + 1, (m + 1) \div 1)
\end{align*}
\]
By repn. of pairs

By repn. of successor and pairs

By defn. of \(\div \)

Theorem 2 \(\text{pred} \overline{n} = \beta n \div 1 \)

Proof: Direct, from Lemma 1.

\[
\begin{align*}
\text{pred} \overline{n} &= (\lambda n. \text{pred}_2 n (\lambda x. \lambda y. y)) \overline{n} \\
&= \beta \text{pred}_2 \overline{n} (\lambda x. \lambda y. y) \\
&= \beta (n, n \div 1) (\lambda x. \lambda y. y) \\
&= \beta (\lambda k. k \overline{n}, n \div 1) (\lambda x. \lambda y. y) \\
&= \beta n \div 1
\end{align*}
\]
By defn. of \(\div \)

An interesting consequence of the Church-Rosser Theorem is that if \(e =_\beta e' \) where \(e' \) is in normal form, then \(e \rightarrow^* e' \).

6.4 General Primitive Recursion

The general case of primitive recursion follows by a similar argument. Recall

\[
\begin{align*}
f 0 &= c \\
f (n + 1) &= h n (f n)
\end{align*}
\]
We begin by defining a function f_2 specified with

$$f_2 n = \langle n, f n \rangle$$

We can define f_2 using the schema of iteration.

$$f_2 0 = \langle 0, c \rangle$$
$$f_2 (n + 1) = \text{letpair} (f_2 n) (\lambda x. \lambda y. \langle x + 1, h x y \rangle)$$
$$f n = \text{letpair} (f_2 n) (\lambda x. \lambda y. x)$$

To put this all together, we implement a function specified with

$$f 0 = c$$
$$f (n + 1) = h n (f n)$$

with the following definition in terms of c and h:

$$\text{pair} = \lambda x. \lambda y. \lambda g. g x y$$
$$f_2 = \lambda n. n (\lambda r. r (\lambda x. \lambda y. \text{pair} (\text{succ} x) (h x y))) (\text{pair} \text{zero} c)$$
$$f = \lambda n. f_2 n (\lambda x. \lambda y. y)$$

Recall that for the concrete case of the predecessor function we have $c = 0$ and $h = \lambda x. \lambda y. x$.

7 The Significance of Primitive Recursion

We have used primitive recursion here only as an aid to see how we can define functions in the pure λ-calculus. However, when computing over natural numbers we can restrict the functions that can be formed in schematic ways to obtain a language in which all functions terminate. Primitive recursion plays a central role in this because if c and g are terminating then so is f formed from them by primitive recursion. This is easy to see by induction on n.

In this ways we obtain a very rich set of functions but we couldn’t use them to fully simulate Turing machines, for example.

Furthermore, if we give a so-called constructive proof of a statement in certain formulations of arithmetic with mathematical induction, we can extract a function that is defined by primitive recursion. We will probably not have an opportunity to discuss this observation further in this course, but it is an important topic in the course 15-317/15-657 Constructive Logic.
8 A Few Somewhat More Rigorous Definitions

We write out some definitions for notions from the first two lectures a little more rigorously.

λ-Expressions. First, the abstract syntax.

\begin{align*}
\text{Variables} & \quad \text{\textit{x}} \\
\text{Expressions} & \quad e \ ::= \ \lambda x.\ e \mid e_1 e_2 \mid x
\end{align*}

\(\lambda x.\ e\) binds \(x\) with scope \(e\). In the concrete syntax, the scope of a binder \(\lambda x\) is as large as possible while remaining consistent with the given parentheses so \(y \ (\lambda x.\ xx)\) stands for \(y \ (\lambda x.\ xx)\). Juxtaposition \(e_1 e_2\) is left-associative so \(e_1 e_2 e_3\) stands for \((e_1 e_2) e_3\).

We define \(\text{FV}(e)\), the free variables of \(e\) with

\begin{align*}
\text{FV}(x) & = \{x\} \\
\text{FV}(\lambda x.\ e) & = \text{FV}(e) \setminus \{x\} \\
\text{FV}(e_1 e_2) & = \text{FV}(e_1) \cup \text{FV}(e_2)
\end{align*}

Renaming. Proper treatment of names in the λ-calculus is notoriously difficult to get right, and even more difficult when one reasons about the λ-calculus. A key convention is that “variable names do not matter”, that is, we actually identify expressions that differ only in the names of their bound variables. So, for example, \(\lambda x.\ \lambda y.\ x z = \lambda y.\ \lambda x.\ y z = \lambda u.\ \lambda w.\ u z\). The textbook defines fresh renamings [Har16, pp. 8–9] as bijections between sequences of variables and then \(\alpha\)-conversion based on fresh renamings. Let’s take this notion for granted right now and write \(e =_{\alpha} e'\) if \(e\) and \(e'\) differ only in the choice of names for their bound variables and this observation is important. From now on we identify \(e\) and \(e'\) if they differ only in the names of their bound variables, which means that other operations such as substitution and \(\beta\)-conversion are defined on \(\alpha\)-equivalence classes of expressions.

Substitution. We can now define substitution of \(e'\) for \(x\) in \(e\), written \([e'/x]e\), following the structure of \(e\).

\begin{align*}
[e'/x]x & = e' \\
[e'/x]y & = y \quad \text{for } y \neq x \\
[e'/x](\lambda y.\ e) & = \lambda y.\ [e'/x]e \quad \text{provided } y \notin \text{FV}(e') \\
[e'/x](e_1 e_2) & = ([e'/x]e_1) \ ([e'/x]e_2)
\end{align*}
This looks like a partial operation, but since we identify terms up to \(\alpha\)-conversion we can always rename the bound variable \(y\) in \([e'/x](\lambda y. e)\) to another variable that is not free in \(e'\) or \(e\). Therefore, substitution is a total function on \(\alpha\)-equivalence classes of expressions.

Now that we have substitution, we also characterize \(\alpha\)-conversion as \(\lambda x. e =_\alpha \lambda y. [y/x]e\) provided \(y \notin \text{FV}(e)\) but as a definition it would be circular because we already required renaming to define substitution.

Equality. We can now define \(\beta\)- and \(\eta\)-conversion. We understand these conversion rules as defining a congruence, that is, we can apply an equation anywhere in an expression that matches the left-hand side of the equality. Moreover, we extend them to be reflexive, symmetric, and transitive so we can write \(e =_\beta e'\) if we can go between \(e\) and \(e'\) by multiple steps of \(\beta\)-conversion.

\[
\begin{align*}
\text{\(\beta\)-conversion} & : (\lambda x. e) e' =_\beta [e'/x]e \\
\text{\(\eta\)-conversion} & : \lambda x. e\ x =_\eta e \quad \text{provided } x \notin \text{FV}(e)
\end{align*}
\]

Reduction. Computation is based on reduction, which applies \(\beta\)-conversion in the left-to-right direction. In the pure calculus we also treat it as a congruence, that is, it can be applied anywhere in an expression.

\[
\beta\text{-reduction } (\lambda x. e) e' \rightarrow_\beta [e'/x]e
\]

Sometimes we like to keep track of length of reduction sequences so we write \(e \rightarrow_\beta^n e'\) if we can go from \(e\) to \(e'\) with \(n\) steps of \(\beta\)-reduction, and \(e \rightarrow_\beta^* e'\) for an arbitrary \(n\) (including 0).

Confluence. The Church-Rosser property (also called confluence) guarantees that the normal form of a \(\lambda\)-expression is unique, if it exists.

Theorem 3 (Church-Rosser [CR36]) If \(e \rightarrow_\beta^* e_1\) and \(e \rightarrow_\beta^* e_2\) then there exists an \(e'\) such that \(e_1 \rightarrow_\beta^* e'\) and \(e_2 \rightarrow_\beta^* e'\).

Exercises

Exercise 1 Analyze whether \(B I f \not\rightarrow^2 f\) and, if so, whether it requires only \(\beta\)-conversion or \(\beta\eta\)-conversion.
Exercise 2 Once we can define each individual instance of the schemas of iteration and primitive recursion, we can also define them explicitly as combinators. Define combinators iter and primrec such that

(i) The function \(\text{iter} \ g \ c \) satisfies the schema of iteration

(ii) The function \(\text{primrec} \ h \ c \) satisfies the schema of primitive recursion

You do not need to prove the correctness of your definitions.

Exercise 3 One approach to representing functions defined by the schema of primitive recursion is to change the representation so that \(\overline{\pi} \) is not an iterator but a primitive recursor.

\[
\begin{align*}
0 &= \lambda s. \lambda z. z \\
\overline{n + 1} &= \lambda s. \lambda z. s \overline{\pi} (\overline{\pi} s z)
\end{align*}
\]

1. Define the successor function \(\text{succ} \) (if possible) and show its correctness.
2. Define the predecessor function \(\text{pred} \) (if possible) and show its correctness.
3. Explore if it is possible to directly represent any function \(f \) specified by a schema of primitive recursion, ideally without constructing and destructing pairs.

References
